Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
Nat Commun ; 15(1): 2962, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580642

RESUMO

The projected trajectory of multidrug resistant tuberculosis (MDR-TB) epidemics depends on the reproductive fitness of circulating strains of MDR M. tuberculosis (Mtb). Previous efforts to characterize the fitness of MDR Mtb have found that Mtb strains of the Beijing sublineage (Lineage 2.2.1) may be more prone to develop resistance and retain fitness in the presence of resistance-conferring mutations than other lineages. Using Mtb genome sequences from all culture-positive cases collected over two years in Moldova, we estimate the fitness of Ural (Lineage 4.2) and Beijing strains, the two lineages in which MDR is concentrated in the country. We estimate that the fitness of MDR Ural strains substantially exceeds that of other susceptible and MDR strains, and we identify several mutations specific to these MDR Ural strains. Our findings suggest that MDR Ural Mtb has been transmitting efficiently in Moldova and poses a substantial risk of spreading further in the region.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Mycobacterium tuberculosis/genética , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Moldávia/epidemiologia , Genótipo , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Farmacorresistência Bacteriana Múltipla/genética
2.
bioRxiv ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38585835

RESUMO

In Mycobacterium tuberculosis proteins that are post-translationally modified with Pup, a prokaryotic ubiquitin-like protein, can be degraded by proteasomes. While pupylation is reversible, mechanisms regulating substrate specificity have not been identified. Here, we identify the first depupylation regulators: CoaX, a pseudokinase, and pantothenate, an essential, central metabolite. In a Δ coaX mutant, pantothenate synthesis enzymes were more abundant, including PanB, a substrate of the Pup-proteasome system. Media supplementation with pantothenate decreased PanB levels in a coaX and Pup-proteasome-dependent manner. In vitro , CoaX accelerated depupylation of Pup∼PanB, while addition of pantothenate inhibited this reaction. Collectively, we propose CoaX contributes to proteasomal degradation of PanB by modulating depupylation of Pup∼PanB in response to pantothenate levels. One Sentence Summary: A pseudo-pantothenate kinase regulates proteasomal degradation of a pantothenate synthesis enzyme in M. tuberculosis .

3.
Am J Manag Care ; 30(3): e73-e77, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38457825

RESUMO

OBJECTIVES: COVID-19 has exacerbated barriers to routine testing for chronic disease management. This study investigates whether a home hemoglobin A1c (HbA1c) test kit intervention increases frequency of HbA1c testing and leads to changes in HbA1c 6 months post testing and whether self-reinforcement education improves maintenance of HbA1c testing. STUDY DESIGN: Retrospective analysis of a randomized, controlled quality improvement intervention among members with type 2 diabetes (T2D) in a large commercial health plan. METHODS: Participants were 41,214 commercial fully insured members with T2D without an HbA1c test in the past 6 months or with only 1 HbA1c test in the last 12 months. Members were randomly assigned to either a control group or an at-home HbA1c testing intervention group consisting of either an opt-in test or a direct-to-member opt-out HbA1c test kit shipment. A third cohort of members was assigned to a self-reinforcement group to encourage continued testing twice per year. Main outcomes were HbA1c testing rates and HbA1c levels (in %). RESULTS: A total of 11.1% (508 of 4590) at-home HbA1c kits were completed. At-home HbA1c test kits increased testing rates by 4.9% compared with controls (P < .001). Members with an HbA1c level of at least 7% who requested and completed at-home HbA1c testing had a 0.38% reduction in HbA1c in the 6 months post intervention when controlling for baseline HbA1c (P < .001). Members who received self-reinforcement messaging had a 0.37% HbA1c reduction post intervention (P = .015). CONCLUSIONS: This novel, at-home approach to test HbA1c is an effective intervention to increase testing rates and facilitate HbA1c reduction over time in patients with T2D.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/terapia , Hemoglobinas Glicadas , Controle Glicêmico , Estudos Retrospectivos
4.
Sci Adv ; 10(11): eadj6406, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489355

RESUMO

There is a compelling need to find drugs active against Mycobacterium tuberculosis (Mtb). 4'-Phosphopantetheinyl transferase (PptT) is an essential enzyme in Mtb that has attracted interest as a potential drug target. We optimized a PptT assay, used it to screen 422,740 compounds, and identified raltitrexed, an antineoplastic antimetabolite, as the most potent PptT inhibitor yet reported. While trying unsuccessfully to improve raltitrexed's ability to kill Mtb and remove its ability to kill human cells, we learned three lessons that may help others developing antibiotics. First, binding of raltitrexed substantially changed the configuration of the PptT active site, complicating molecular modeling of analogs based on the unliganded crystal structure or the structure of cocrystals with inhibitors of another class. Second, minor changes in the raltitrexed molecule changed its target in Mtb from PptT to dihydrofolate reductase (DHFR). Third, the structure-activity relationship for over 800 raltitrexed analogs only became interpretable when we quantified and characterized the compounds' intrabacterial accumulation and transformation.


Assuntos
Mycobacterium tuberculosis , Neoplasias , Quinazolinas , Tiofenos , Transferases (Outros Grupos de Fosfato Substituídos) , Humanos , Mycobacterium tuberculosis/metabolismo , Timidilato Sintase/metabolismo , Proteínas de Bactérias/metabolismo
5.
bioRxiv ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38405924

RESUMO

Microbes encounter a myriad of stresses during their life cycle. Dysregulation of metal ion homeostasis is increasingly recognized as a key factor in host-microbe interactions. Bacterial metal ion homeostasis is tightly regulated by dedicated metalloregulators that control uptake, sequestration, trafficking, and efflux. Here, we demonstrate that deletion of the Bacillus subtilis yqgC-sodA (YS) complex operon, but not deletion of the individual genes, causes hypersensitivity to manganese (Mn). YqgC is an integral membrane protein of unknown function and SodA is a Mn-dependent superoxide dismutase (MnSOD). The YS strain has reduced expression of two Mn efflux proteins, MneP and MneS, consistent with the observed Mn sensitivity. The YS strain accumulated high levels of Mn, had increased reactive radical species (RRS), and had broad metabolic alterations that can be partially explained by the inhibition of Mg-dependent enzymes. Although the YS operon deletion strain and an efflux-deficient mneP mneS double mutant both accumulate Mn and have similar metabolic perturbations they also display phenotypic differences. Several mutations that suppressed Mn intoxication of the mneP mneS efflux mutant did not benefit the YS mutant. Further, Mn intoxication in the YS mutant, but not the mneP mneS strain, was alleviated by expression of Mg-dependent, chorismate-utilizing enzymes of the menaquinone, siderophore, and tryptophan (MST) family. Therefore, despite their phenotypic similarities, the Mn sensitivity in the mneP mneS and the yqgC-sodA deletion mutants results from distinct enzymatic vulnerabilities.

6.
Nat Commun ; 15(1): 646, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245513

RESUMO

Bioengineered probiotics enable new opportunities to improve colorectal cancer (CRC) screening, prevention and treatment. Here, first, we demonstrate selective colonization of colorectal adenomas after oral delivery of probiotic E. coli Nissle 1917 (EcN) to a genetically-engineered murine model of CRC predisposition and orthotopic models of CRC. We next undertake an interventional, double-blind, dual-centre, prospective clinical trial, in which CRC patients take either placebo or EcN for two weeks prior to resection of neoplastic and adjacent normal colorectal tissue (ACTRN12619000210178). We detect enrichment of EcN in tumor samples over normal tissue from probiotic-treated patients (primary outcome of the trial). Next, we develop early CRC intervention strategies. To detect lesions, we engineer EcN to produce a small molecule, salicylate. Oral delivery of this strain results in increased levels of salicylate in the urine of adenoma-bearing mice, in comparison to healthy controls. To assess therapeutic potential, we engineer EcN to locally release a cytokine, GM-CSF, and blocking nanobodies against PD-L1 and CTLA-4 at the neoplastic site, and demonstrate that oral delivery of this strain reduces adenoma burden by ~50%. Together, these results support the use of EcN as an orally-deliverable platform to detect disease and treat CRC through the production of screening and therapeutic molecules.


Assuntos
Adenoma , Neoplasias Colorretais , Animais , Humanos , Camundongos , Adenoma/diagnóstico , Adenoma/terapia , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Escherichia coli/genética , Estudos Prospectivos , Salicilatos , Método Duplo-Cego
7.
Cell Chem Biol ; 31(4): 683-698.e7, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38151019

RESUMO

Mycobacterial bioenergetics is a validated target space for antitubercular drug development. Here, we identify BB2-50F, a 6-substituted 5-(N,N-hexamethylene)amiloride derivative as a potent, multi-targeting bioenergetic inhibitor of Mycobacterium tuberculosis. We show that BB2-50F rapidly sterilizes both replicating and non-replicating cultures of M. tuberculosis and synergizes with several tuberculosis drugs. Target identification experiments, supported by docking studies, showed that BB2-50F targets the membrane-embedded c-ring of the F1Fo-ATP synthase and the catalytic subunit (substrate-binding site) of succinate dehydrogenase. Biochemical assays and metabolomic profiling showed that BB2-50F inhibits succinate oxidation, decreases the activity of the tricarboxylic acid (TCA) cycle, and results in succinate secretion from M. tuberculosis. Moreover, we show that the lethality of BB2-50F under aerobic conditions involves the accumulation of reactive oxygen species. Overall, this study identifies BB2-50F as an effective inhibitor of M. tuberculosis and highlights that targeting multiple components of the mycobacterial respiratory chain can produce fast-acting antimicrobials.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Succinato Desidrogenase/metabolismo , Succinato Desidrogenase/farmacologia , Antituberculosos/química , Tuberculose/tratamento farmacológico , Trifosfato de Adenosina , Inibidores Enzimáticos/farmacologia , Succinatos
8.
Elife ; 122023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37782020

RESUMO

The growing complexities of clinical medicine and biomedical research have clouded the career path for physician-scientists. In this perspective piece, we address one of the most opaque career stage transitions along the physician-scientist career path, the transition from medical school to research-focused internal medicine residency programs, or physician-scientist training programs (PSTPs). We present the perspectives of medical scientist training program (MSTP) and PSTP directors on critical features of PSTPs that can help trainees proactively align their clinical and scientific training for successful career development. We aim to provide both trainees and MSTP directors with a conceptual framework to better understand and navigate PSTPs. We also offer interview-specific questions to help trainees gather data and make informed decisions in choosing a residency program that best supports their career.


Assuntos
Pesquisa Biomédica , Internato e Residência , Médicos , Humanos , Educação de Pós-Graduação , Pesquisa Biomédica/educação , Escolha da Profissão
9.
G3 (Bethesda) ; 13(9)2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37405387

RESUMO

Genetic differences among mammalian hosts and among strains of Mycobacterium tuberculosis (Mtb) are well-established determinants of tuberculosis (TB) patient outcomes. The advent of recombinant inbred mouse panels and next-generation transposon mutagenesis and sequencing approaches has enabled dissection of complex host-pathogen interactions. To identify host and pathogen genetic determinants of Mtb pathogenesis, we infected members of the highly diverse BXD family of strains with a comprehensive library of Mtb transposon mutants (TnSeq). Members of the BXD family segregate for Mtb-resistant C57BL/6J (B6 or B) and Mtb-susceptible DBA/2J (D2 or D) haplotypes. The survival of each bacterial mutant was quantified within each BXD host, and we identified those bacterial genes that were differentially required for Mtb fitness across BXD genotypes. Mutants that varied in survival among the host family of strains were leveraged as reporters of "endophenotypes," each bacterial fitness profile directly probing specific components of the infection microenvironment. We conducted quantitative trait loci (QTL) mapping of these bacterial fitness endophenotypes and identified 140 host-pathogen QTL (hpQTL). We located a QTL hotspot on chromosome 6 (75.97-88.58 Mb) associated with the genetic requirement of multiple Mtb genes: Rv0127 (mak), Rv0359 (rip2), Rv0955 (perM), and Rv3849 (espR). Together, this screen reinforces the utility of bacterial mutant libraries as precise reporters of the host immunological microenvironment during infection and highlights specific host-pathogen genetic interactions for further investigation. To enable downstream follow-up for both bacterial and mammalian genetic research communities, all bacterial fitness profiles have been deposited into GeneNetwork.org and added into the comprehensive collection of TnSeq libraries in MtbTnDB.


Assuntos
Mycobacterium tuberculosis , Camundongos , Animais , Mycobacterium tuberculosis/genética , Camundongos Endogâmicos DBA , Camundongos Endogâmicos C57BL , Locos de Características Quantitativas , Mutagênese , Mamíferos/genética
10.
Toxins (Basel) ; 15(7)2023 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-37505742

RESUMO

Ochratoxin A (OTA) is a mycotoxin that induces fibrosis and epithelial-to-mesenchymal transitions (EMT) in kidneys and livers. It enters our bodies through food consumption, where it is absorbed in the intestines. However, the impact of OTA on the intestines is yet to be studied. MicroRNA (miRNAs) are small non-coding single-stranded RNAs that block the transcription of specific mRNAs and are, therefore, involved in many biochemical processes. Our findings indicate that OTA can induce EMT and intestinal fibrosis both in vivo and in vitro. This study examines the impact of OTA on intestinal toxicity and the role of miRNAs in this process. Following OTA treatment, miR-155-5p was the most elevated miRNA by next-generation sequencing. Our research showed that OTA increased miR-155-5p levels through transforming growth factor ß (TGF-ß), leading to the development of intestinal fibrosis and EMT. Additionally, the study identified that the modulation of TGF-ß and miR-155-5p by OTA is linked to the inhibition of CCAAT/enhancer-binding protein ß (C/EBPß) and Smad2/3 accumulation in the progression of intestinal fibrosis.


Assuntos
MicroRNAs , Fator de Crescimento Transformador beta , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Intestinos , Fibrose , Transição Epitelial-Mesenquimal
11.
Nat Microbiol ; 8(7): 1280-1292, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37277533

RESUMO

For Plasmodium falciparum, the most widespread and virulent malaria parasite that infects humans, persistence depends on continuous asexual replication in red blood cells, while transmission to their mosquito vector requires asexual blood-stage parasites to differentiate into non-replicating gametocytes. This decision is controlled by stochastic derepression of a heterochromatin-silenced locus encoding AP2-G, the master transcription factor of sexual differentiation. The frequency of ap2-g derepression was shown to be responsive to extracellular phospholipid precursors but the mechanism linking these metabolites to epigenetic regulation of ap2-g was unknown. Through a combination of molecular genetics, metabolomics and chromatin profiling, we show that this response is mediated by metabolic competition for the methyl donor S-adenosylmethionine between histone methyltransferases and phosphoethanolamine methyltransferase, a critical enzyme in the parasite's pathway for de novo phosphatidylcholine synthesis. When phosphatidylcholine precursors are scarce, increased consumption of SAM for de novo phosphatidylcholine synthesis impairs maintenance of the histone methylation responsible for silencing ap2-g, increasing the frequency of derepression and sexual differentiation. This provides a key mechanistic link that explains how LysoPC and choline availability can alter the chromatin status of the ap2-g locus controlling sexual differentiation.


Assuntos
Malária , Parasitos , Animais , Humanos , Parasitos/genética , Parasitos/metabolismo , Histonas/metabolismo , Diferenciação Sexual , Metilação , Epigênese Genética , Malária/parasitologia , Cromatina , Fosfatidilcolinas , Fosfolipídeos
12.
mBio ; 14(4): e0034023, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37350592

RESUMO

Nicotinamide adenine dinucleotide (NAD) and its phosphorylated derivative (NADP) are essential cofactors that participate in hundreds of biochemical reactions and have emerged as therapeutic targets in cancer, metabolic disorders, neurodegenerative diseases, and infections, including tuberculosis. The biological basis for the essentiality of NAD(P) in most settings, however, remains experimentally unexplained. Here, we report that inactivation of the terminal enzyme of NAD synthesis, NAD synthetase (NadE), elicits markedly different metabolic and microbiologic effects than those of the terminal enzyme of NADP biosynthesis, NAD kinase (PpnK), in Mycobacterium tuberculosis (Mtb). Inactivation of NadE led to parallel reductions of both NAD and NADP pools and Mtb viability, while inactivation of PpnK selectively depleted NADP pools but only arrested growth. Inactivation of each enzyme was accompanied by metabolic changes that were specific for the affected enzyme and associated microbiological phenotype. Bacteriostatic levels of NAD depletion caused a compensatory remodeling of NAD-dependent metabolic pathways in the absence of an impact on NADH/NAD ratios, while bactericidal levels of NAD depletion resulted in a disruption of NADH/NAD ratios and inhibition of oxygen respiration. These findings reveal a previously unrecognized physiologic specificity associated with the essentiality of two evolutionarily ubiquitous cofactors. IMPORTANCE The current course for cure of Mycobacterium tuberculosis (Mtb)-the etiologic agent of tuberculosis (TB)-infections is lengthy and requires multiple antibiotics. The development of shorter, simpler treatment regimens is, therefore, critical to the goal of eradicating TB. NadE, an enzyme required for the synthesis of the ubiquitous cofactor NAD, is essential for survival of Mtb and regarded as a promising drug target. However, the basis of this essentiality was not clear due to its role in the synthesis of both NAD and NADP. Here, we resolve this ambiguity through a combination of gene silencing and metabolomics. We specifically show that NADP deficiency is bacteriostatic, while NAD deficiency is bactericidal due to its role in Mtb's respiratory capacity. These results argue for a prioritization of NAD biosynthesis inhibitors in anti-TB drug development.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , NAD/metabolismo , NADP/metabolismo , Ligases/metabolismo
13.
Ecotoxicol Environ Saf ; 259: 115001, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37196520

RESUMO

Per- and polyfluoroalkyl substances (PFASs) and perfluoroalkyl ether carboxylic acids (PFECAs) are organic chemicals that are widely used in the manufacture of a wide range of human-made products. Many monitoring findings revealed the presence of PFASs and PFECAs in numerous environmental sources, including water, soil, and air, which drew more attention to both chemicals. Because of their unknown toxicity, the discovery of PFASs and PFECAs in a variety of environmental sources was viewed as a cause for concern. In the present study, male mice were given orally one of the typical PFASs, perfluorooctanoic acid (PFOA), and one of the representative PFECAs, hexafluoropropylene oxide-dimer acid (HFPO-DA). The liver index showing hepatomegaly rose significantly after 90 d of exposure to PFOA and HFPO-DA, respectively. While sharing similar suppressor genes, both chemicals demonstrated unique hepatotoxic mechanisms. In different ways, these two substances altered the expression of hepatic stress-sensing genes as well as the regulation of nuclear receptors. Not only are bile acid metabolism-related genes in the liver altered, but cholesterol metabolism-related genes as well. These results indicate that PFOA and HFPO-DA both cause hepatotoxicity and bile acid metabolism impairment with distinct mechanisms.


Assuntos
Fluorocarbonos , Humanos , Camundongos , Masculino , Animais , Fluorocarbonos/toxicidade , Fluorocarbonos/metabolismo , Fígado/metabolismo , Ácidos e Sais Biliares
14.
bioRxiv ; 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37066243

RESUMO

Bioengineered probiotics enable new opportunities to improve colorectal cancer (CRC) screening, prevention and treatment strategies. Here, we demonstrate the phenomenon of selective, long-term colonization of colorectal adenomas after oral delivery of probiotic E. coli Nissle 1917 (EcN) to a genetically-engineered murine model of CRC predisposition. We show that, after oral administration, adenomas can be monitored over time by recovering EcN from stool. We also demonstrate specific colonization of EcN to solitary neoplastic lesions in an orthotopic murine model of CRC. We then exploit this neoplasia-homing property of EcN to develop early CRC intervention strategies. To detect lesions, we engineer EcN to produce a small molecule, salicylate, and demonstrate that oral delivery of this strain results in significantly increased levels of salicylate in the urine of adenoma-bearing mice, in comparison to healthy controls. We also assess EcN engineered to locally release immunotherapeutics at the neoplastic site. Oral delivery to mice bearing adenomas, reduced adenoma burden by ∻50%, with notable differences in the spatial distribution of T cell populations within diseased and healthy intestinal tissue, suggesting local induction of robust anti-tumor immunity. Together, these results support the use of EcN as an orally-delivered platform to detect disease and treat CRC through its production of screening and therapeutic molecules.

15.
Proc Natl Acad Sci U S A ; 120(17): e2302152120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068249

RESUMO

The primary antigenic and virulence determinant of the human malaria parasite Plasmodium falciparum is a variant surface protein called PfEMP1. Different forms of PfEMP1 are encoded by a multicopy gene family called var, and switching between active genes enables the parasites to evade the antibody response of their human hosts. var gene switching is key for the maintenance of chronic infections; however, what controls switching is unknown, although it has been suggested to occur at a constant frequency with little or no environmental influence. var gene transcription is controlled epigenetically through the activity of histone methyltransferases (HMTs). Studies in model systems have shown that metabolism and epigenetic control of gene expression are linked through the availability of intracellular S-adenosylmethionine (SAM), the principal methyl donor in biological methylation modifications, which can fluctuate based on nutrient availability. To determine whether environmental conditions and changes in metabolism can influence var gene expression, P. falciparum was cultured in media with altered concentrations of nutrients involved in SAM metabolism. We found that conditions that influence lipid metabolism induce var gene switching, indicating that parasites can respond to changes in their environment by altering var gene expression patterns. Genetic modifications that directly modified expression of the enzymes that control SAM levels similarly led to profound changes in var gene expression, confirming that changes in SAM availability modulate var gene switching. These observations directly challenge the paradigm that antigenic variation in P. falciparum follows an intrinsic, programed switching rate, which operates independently of any external stimuli.


Assuntos
Malária Falciparum , Parasitos , Animais , Humanos , Plasmodium falciparum/metabolismo , Parasitos/metabolismo , Regulação da Expressão Gênica , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Malária Falciparum/parasitologia , Variação Antigênica/genética
16.
mBio ; 14(2): e0007323, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36939339

RESUMO

The cytosol of eukaryotic host cells is an intrinsically hostile environment for bacteria. Understanding how cytosolic pathogens adapt to and survive in the cytosol is critical to developing novel therapeutic interventions against these pathogens. The cytosolic pathogen Listeria monocytogenes requires glmR (previously known as yvcK), a gene of unknown function, for resistance to cell-wall stress, cytosolic survival, inflammasome avoidance, and, ultimately, virulence in vivo. In this study, a genetic suppressor screen revealed that blocking utilization of UDP N-acetylglucosamine (UDP-GlcNAc) by a nonessential wall teichoic acid decoration pathway restored resistance to lysozyme and partially restored virulence of ΔglmR mutants. In parallel, metabolomic analysis revealed that ΔglmR mutants are impaired in the production of UDP-GlcNAc, an essential peptidoglycan and wall teichoic acid (WTA) precursor. We next demonstrated that purified GlmR can directly catalyze the synthesis of UDP-GlcNAc from GlcNAc-1P and UTP, suggesting that it is an accessory uridyltransferase. Biochemical analysis of GlmR orthologues suggests that uridyltransferase activity is conserved. Finally, mutational analysis resulting in a GlmR mutant with impaired catalytic activity demonstrated that uridyltransferase activity was essential to facilitate cell-wall stress responses and virulence in vivo. Taken together, these studies indicate that GlmR is an evolutionary conserved accessory uridyltransferase required for cytosolic survival and virulence of L. monocytogenes. IMPORTANCE Bacterial pathogens must adapt to their host environment in order to cause disease. The cytosolic bacterial pathogen Listeria monocytogenes requires a highly conserved protein of unknown function, GlmR (previously known as YvcK), to survive in the host cytosol. GlmR is important for resistance to some cell-wall stresses and is essential for virulence. The ΔglmR mutant is deficient in production of an essential cell-wall metabolite, UDP-GlcNAc, and suppressors that increase metabolite levels also restore virulence. Purified GlmR can directly catalyze the synthesis of UDP-GlcNAc, and this enzymatic activity is conserved in both Bacillus subtilis and Staphylococcus aureus. These results highlight the importance of accessory cell wall metabolism enzymes in responding to cell-wall stress in a variety of Gram-positive bacteria.


Assuntos
Listeria monocytogenes , Virulência , Citosol/metabolismo , UDPglucose-Hexose-1-Fosfato Uridiltransferase/metabolismo , Parede Celular/metabolismo , Difosfato de Uridina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
17.
bioRxiv ; 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36945430

RESUMO

Genetic differences among mammalian hosts and Mycobacterium tuberculosis ( Mtb ) strains determine diverse tuberculosis (TB) patient outcomes. The advent of recombinant inbred mouse panels and next-generation transposon mutagenesis and sequencing approaches has enabled dissection of complex host- pathogen interactions. To identify host and pathogen genetic determinants of Mtb pathogenesis, we infected members of the BXD family of mouse strains with a comprehensive library of Mtb transposon mutants (TnSeq). Members of the BXD family segregate for Mtb -resistant C57BL/6J (B6 or B ) and Mtb -susceptible DBA/2J (D2 or D ) haplotypes. The survival of each bacterial mutant was quantified within each BXD host, and we identified those bacterial genes that were differentially required for Mtb fitness across BXD genotypes. Mutants that varied in survival among the host family of strains were leveraged as reporters for "endophenotypes", each bacterial fitness profile directly probing specific components of the infection microenvironment. We conducted QTL mapping of these bacterial fitness endophenotypes and identified 140 h ost- p athogen quantitative trait loci ( hp QTL). We identified a QTL hotspot on chromosome 6 (75.97-88.58 Mb) associated with the genetic requirement of multiple Mtb genes; Rv0127 ( mak ), Rv0359 ( rip2 ), Rv0955 ( perM ), and Rv3849 ( espR ). Together, this screen reinforces the utility of bacterial mutant libraries as precise reporters of the host immunological microenvironment during infection and highlights specific host-pathogen genetic interactions for further investigation. To enable downstream follow-up for both bacterial and mammalian genetic research communities, all bacterial fitness profiles have been deposited into GeneNetwork.org and added into the comprehensive collection of TnSeq libraries in MtbTnDB.

18.
J Med Internet Res ; 25: e45064, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36917152

RESUMO

BACKGROUND: Mobile health (mHealth) technology holds great promise as an easily accessible and effective solution to improve population health at scale. Despite the abundance of mHealth offerings, only a minority are grounded in evidence-based practice, whereas even fewer have line of sight into population-level health care spending, limiting the clinical utility of such tools. OBJECTIVE: This study aimed to explore the influence of a health plan-sponsored, wearable-based, and reward-driven digital health intervention (DHI) on health care spending over 1 year. The DHI was delivered through a smartphone-based mHealth app available only to members of a large commercial health plan and leveraged a combination of behavioral economics, user-generated sensor data from the connected wearable device, and claims history to create personalized, evidence-based recommendations for each user. METHODS: This study deployed a propensity score-matched, 2-group, and pre-post observational design. Adults (≥18 years of age) enrolled in a large, national commercial health plan and self-enlisted in the DHI for ≥7 months were allocated to the intervention group (n=56,816). Members who were eligible for the DHI but did not enlist were propensity score-matched to the comparison group (n=56,816). Average (and relative change from baseline) medical and pharmacy spending per user per month was computed for each member of the intervention and comparison groups during the pre- (ie, 12 months) and postenlistment (ie, 7-12 months) periods using claims data. RESULTS: Baseline characteristics and medical spending were similar between groups (P=.89). On average, the total included sample population (N=113,632) consisted of young to middle-age (mean age 38.81 years), mostly White (n=55,562, 48.90%), male (n=46,731, 41.12%) and female (n=66,482, 58.51%) participants. Compared to a propensity score-matched cohort, DHI users demonstrated approximately US $10 per user per month lower average medical spending (P=.02) with a concomitant increase in preventive care activities and decrease in nonemergent emergency department admissions. These savings translated to approximately US $6.8 million in avoidable health care costs over the course of 1 year. CONCLUSIONS: This employer-sponsored, digital health engagement program has a high likelihood for return on investment within 1 year owing to clinically meaningful changes in health-seeking behaviors and downstream medical cost savings. Future research should aim to elucidate health behavior-related mechanisms in support of these findings and continue to explore novel strategies to ensure equitable access of DHIs to underserved populations that stand to benefit the most.


Assuntos
Custos de Medicamentos , Custos de Cuidados de Saúde , Adulto , Pessoa de Meia-Idade , Humanos , Masculino , Feminino , Lactente , Estudos Retrospectivos , Estudos de Coortes , Pontuação de Propensão
19.
BMJ Glob Health ; 8(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36792230

RESUMO

The COVID-19 pandemic highlighted the need to prioritise mature digital health and data governance at both national and supranational levels to guarantee future health security. The Riyadh Declaration on Digital Health was a call to action to create the infrastructure needed to share effective digital health evidence-based practices and high-quality, real-time data locally and globally to provide actionable information to more health systems and countries. The declaration proposed nine key recommendations for data and digital health that need to be adopted by the global health community to address future pandemics and health threats. Here, we expand on each recommendation and provide an evidence-based roadmap for their implementation. This policy document serves as a resource and toolkit that all stakeholders in digital health and disaster preparedness can follow to develop digital infrastructure and protocols in readiness for future health threats through robust digital public health leadership.


Assuntos
COVID-19 , Saúde Pública , Humanos , Liderança , Pandemias/prevenção & controle , Saúde Global
20.
mBio ; 14(2): e0316822, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36779708

RESUMO

Bacteria can adapt to stressful conditions through mutations affecting the RNA polymerase core subunits that lead to beneficial changes in transcription. In response to selection with rifampicin (RIF), mutations arise in the RIF resistance-determining region (RRDR) of rpoB that reduce antibiotic binding. These changes can also alter transcription and thereby have pleiotropic effects on bacterial fitness. Here, we studied the evolution of resistance in Bacillus subtilis to the synergistic combination of RIF and the ß-lactam cefuroxime (CEF). Two independent evolution experiments led to the recovery of a single rpoB allele (S487L) that was able to confer resistance to RIF and CEF through a single mutation. Two other common RRDR mutations made the cells 32 times more sensitive to CEF (H482Y) or led to only modest CEF resistance (Q469R). The diverse effects of these three mutations on CEF resistance are correlated with differences in the expression of peptidoglycan (PG) synthesis genes and in the levels of two metabolites crucial in regulating PG synthesis, glucosamine-6-phosphate (GlcN-6-P) and UDP-N-acetylglucosamine (UDP-GlcNAc). We conclude that RRDR mutations can have widely varying effects on pathways important for cell wall biosynthesis, and this may restrict the spectrum of mutations that arise during combination therapy. IMPORTANCE Rifampicin (RIF) is one of the most valued drugs in the treatment of tuberculosis. TB treatment relies on a combination therapy and for multidrug-resistant strains may include ß-lactams. Mutations in rpoB present a common route for emergence of resistance to RIF. In this study, using B. subtilis as a model, we evaluate the emergence of resistance for the synergistic combination of RIF and the ß-lactam cefuroxime (CEF). One clinically relevant rpoB mutation conferred resistance to both RIF and CEF, whereas one other increased CEF sensitivity. We were able to link these CEF sensitivity phenotypes to accumulation of UDP-N-acetylglucosamine (UDP-GlcNAc), which feedback regulates GlmS activity and thereby peptidoglycan synthesis. Further, we found that higher CEF concentrations precluded the emergence of high RIF resistance. Collectively, these results suggest that multidrug treatment regimens may limit the available pathways for the evolution of antibiotic resistance.


Assuntos
Mycobacterium tuberculosis , Rifampina , Rifampina/farmacologia , Rifampina/uso terapêutico , Peptidoglicano/genética , beta-Lactamas/farmacologia , Cefuroxima/farmacologia , Acetilglucosamina , Mycobacterium tuberculosis/genética , Farmacorresistência Bacteriana/genética , Mutação , Difosfato de Uridina , RNA Polimerases Dirigidas por DNA/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Testes de Sensibilidade Microbiana , Antituberculosos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...